

SIMA EXAMPLE P1

Getting Started with SimaPy

Valid from Sima version 4.6

| Getting Started with SimaPy | Sima 4.6 |

Sima Example

Getting Started with SimaPy

Date: October 2024

Valid from Sima version 4.6

Prepared by: Digital Solutions at DNV

E-mail support: software.support@dnv.com

E-mail sales: digital@dnv.com

© DNV AS. All rights reserved.

This publication or parts thereof may not be reproduced or transmitted in any form or by any means, including copying
or recording, without the prior written consent of DNV AS.

mailto:software.support@dnv.com
mailto:digital@dnv.com

| Getting Started with SimaPy | Sima 4.6 | Page i

Table of contents

1 INTRODUCTION ... 1

2 SETTING UP PYTHON DEVELOPMENT ENVIRONMENT ... 1

2.1 Installing Visual Studio Code (VS Code) 1

2.2 Installing Python 3.12.x 2

2.3 Installing Python extension for VS Code 3

2.4 Installing Jupyter Notebook Extension 3

2.5 Installing SimaPy Python Library 4

3 TESTING PYTHON DEVELOPMENT ENVIRONMENT ... 7

4 TESTING JUPYTER NOTEBOOK .. 9

5 CREATING SIMA MODEL WITH SIMAPY .. 12

5.1 Exporting an existing model as Python file in Sima 12

5.2 Checking the Contents of the Python File 14

5.3 Writing the Model as JSON File from SimaPy 17

5.4 Using Python Scripting to Modify the Model 18

| Getting Started with SimaPy | Sima 4.6 | Page 1

1 INTRODUCTION

SimaPy is a Python library that can be used to interact with Sima. It can be used to create new Sima models, modify

existing models, and run simulations without using the Sima GUI. SimaPy is mainly useful to automate the modelling of

Sima analysis, which we will learn in this example.

2 SETTING UP PYTHON DEVELOPMENT ENVIRONMENT

This chapter will walk you through setting up a development environment for SimaPy using Visual Studio Code (VS

Code) and Python to kickstart your SimaPy experience. We will also set up Jupyter to use other SimaPy examples.

Note: Experienced Python users may skip the Python setup and go directly to Chapter 2.5, step 5.

2.1 Installing Visual Studio Code (VS Code)

Download and install VS Code from the official website. VS Code is a free, open-source code editor that provides

excellent support for various programming languages and extensions, making it a popular choice for developers.

Note: We will use VS Code for this example, but you may use any other text editor or IDE you like. You may also

change the colour theme to any of your likings.

https://code.visualstudio.com/

| Getting Started with SimaPy | Sima 4.6 | Page 2

2.2 Installing Python 3.12.x

To set up your SimaPy development environment, you will need to install Python 3.10.x or newer. If you already have a

compatible version of Python installed, feel free to skip this step.

Follow these steps to get Python 3.12.x (the latest version at the time of writing this example) installed:

1. Download Python 3.12.x: Visit the official Python website.

2. Install Python 3.12.x: Run the installer you downloaded in the previous step. One important note during the

installation is to select the option 'Add python.exe to the PATH' (as shown in the image below). This option is

turned off by default, so make sure to activate it for a smoother development experience. Both 32-bit and 64-bit

Python versions are supported.

3. Verify the Default Python Version: To ensure a smooth development experience, it's important to confirm the
default Python version on your system, especially if you have multiple Python installations.

Follow these steps:
➢ : W u > “c ” > E .
➢ In the terminal window, run the following command. This will display the installed version of Python.

python --version

The output will show the default Python version installed on your system. This information is useful for setting up

your development environment and ensuring compatibility with SimaPy.

https://www.python.org/downloads/

| Getting Started with SimaPy | Sima 4.6 | Page 3

2.3 Installing Python extension for VS Code

The Python extension for VS Code offers rich support for the Python language. It comes with features such as

IntelliSense (Pylance), linting, debugging, code navigation, code formatting, refactoring, variable explorer, test explorer,

and more. It is a handy tool for Python developers.

To install it in VS Code, follow these steps:

1. Open VS Code.

2. Click the Extensions icon (the four squares icon) in the Activity Bar.

3. In the search bar, type “python”.

4. Click the Install button next to the Python extension by Microsoft.

5. Once the extension is installed, restart VS Code.

VS Code should automatically detect the Python language and provide syntax highlighting and other features.

2.4 Installing Jupyter Notebook Extension

The Jupyter Notebook extension for VS Code provides basic notebook support for language kernels that are supported

in Jupyter Notebooks today and allows any Python environment to be used as a Jupyter kernel. Future examples of

SimaPy will be delivered as Jupyter notebooks, so it is recommended to install it now.

To install the Jupyter Notebook extension in VS Code, follow these steps:

1. Open VS Code.

2. Click the Extensions icon (the four squares icon) in the Activity Bar.

3. In the search bar, type “Jupyter”.

4. Click the Install button next to the Jupyter extension by Microsoft.

5. Once the extension is installed, restart VS Code.

| Getting Started with SimaPy | Sima 4.6 | Page 4

The Jupyter Notebook extension will enable you to create, edit, and run Jupyter notebooks directly in VS Code.

2.5 Installing SimaPy Python Library

Follow these steps to create your project folder and install the SimaPy Python library:

1. Open VSCode.

2. Create and open a project folder, for example, C:\DNV\Python\simapy_workspace folder (File > Open Folder).

You may need to create the folder manually in Windows explorer.

3. (optional) Activate a virtual environment.

Note: A virtual environment is a tool that helps to keep dependencies (libraries) and configurations of a Python

project separate from other projects. For SimaPy, virtual environment is mainly useful when you want to use

different Sima and SimaPy versions in a machine without conflicts. While you do not have to use virtual

environment, it is a good practice to use it in your projects.

To set up a local virtual environment in VS Code, you can follow these steps:

➢ Open the Command Palette (Ctrl+Shift+P), search for the Python: Create Environment command, and

select it.

| Getting Started with SimaPy | Sima 4.6 | Page 5

➢ Select Venv.

➢ Select Python 3.12.x you just installed.

A .venv folder will be created in your project folder. This folder will contain and isolate the Python libraries for

this project.

4. Click Terminal > New Terminal to create a new terminal.

A new terminal will be shown at the bottom of the VS Code screen.

| Getting Started with SimaPy | Sima 4.6 | Page 6

(only if you are using the virtual environment) Activate the virtual environment by running the following

command:

.\.venv\Scripts\Activate

You will see (.venv) at the start of the command line indicating the virtual environment is activated:

5. Run the following terminal command to install the latest SimaPy and its dependencies:

pip install simapy

SimaPy library will be downloaded and installed:

| Getting Started with SimaPy | Sima 4.6 | Page 7

3 TESTING PYTHON DEVELOPMENT ENVIRONMENT

We will test if the Python development environment and SimaPy works correctly in this chapter.

To test if the installed Python development environment and the SimaPy library work correctly, follow these steps:

1. Copy simapy_test.py file from the example input files to your project folder.

2. Open the file in VSCode. You will see a populated Python script. For now, ignore the contents.

3. Verify if Python 3.12.x or Python 3.12.x (‘.venv’: venv) (if you are using virtual environment) is selected at the

bottom-right corner of the VSCode window.

If not, click it and select the Python 3.12.x interpreter path. Shown below is when using virtual environment.

4. Click the Run Python File icon at the top-right corner of the VSCode window to run the script.

| Getting Started with SimaPy | Sima 4.6 | Page 8

5. Once the process completes, “JSON file is written to output\rotatingbodies.json” will be printed.

At the same time, rotatingbodies.json file is written to the output folder.

6. Open Sima GUI, import the rotatingbodies.json file. You will see a Simo task named RotatingBodies in the

workspace.

Congratulations! You have finished setting up the SimaPy development environment and ready to automate your Sima

modelling using Python. To check if the Jupyter notebook also works correctly, go to the next chapter.

| Getting Started with SimaPy | Sima 4.6 | Page 9

4 TESTING JUPYTER NOTEBOOK

In this chapter, we will prepare and test the Jupyter notebook environment. We will run the same script we ran in the

previous chapter with a Jupyter notebook and get another JSON file.

Follow these steps:

1. Copy simapy_test.ipynb file from the example input files to your project folder.

2. Open the file in VSCode. You should see a populated Jupyter notebook. For now, ignore the contents.

3. Click the Run All button at the top to run the whole notebook.

4. If the Python environment is not yet selected, you will be prompted to select one. Do the following:

➢ Select Python Environments.

➢ If you are using a virtual environment, select venv. Otherwise, select any Python 3.12.x.

| Getting Started with SimaPy | Sima 4.6 | Page 10

➢ Verify if the venv or Python 3.12.x is shown at the right side of the notebook, click Run All again.

5. If Jupyter kernel is not installed, you will be prompted to install one. Click Install.

Wait for the Jupyter kernel to be installed and the notebook to be run.

6. Scroll down to the end of the notebook and see if the message “JSON file is written to

output\rotatingbodies_jupyter.json” should be printed.

Then, a rotatingbodies_jupyter.json file is also written to the output folder.

7. Open Sima GUI, import the rotatingbodies_jupyter.json file. You will see the Simo task RotatingBodiesJupyter in

the workspace.

| Getting Started with SimaPy | Sima 4.6 | Page 11

Congratulations! You have finished setting up the Jupyter notebook environment and now is ready to explore future

SimaPy examples.

| Getting Started with SimaPy | Sima 4.6 | Page 12

5 CREATING SIMA MODEL WITH SIMAPY

In this chapter, we will learn how to generate SimaPy codes with Sima and use it as a template to create a Sima model

using SimaPy. At the end, we will import the created model into Sima.

5.1 Exporting an existing model as Python file in Sima

Sima can generate a SimaPy Python file for a model. This is mainly useful to learn and understand SimaPy.

Follow these steps to export a model as Python file:

1. Open a new Sima workspace (the Sima GUI).

2. Create or import any Sima model. As an example, load Rotating Bodies examples by clicking Help > Examples >

SIMO > Introductory > Rotating Bodies.

3. In the Navigator, right-click the RotatingBodies task and click Export. Then, select SIMA > Python model export.

| Getting Started with SimaPy | Sima 4.6 | Page 13

4. Click Next c ’ v c . v rotatingbodies.py in your SimaPy project folder.

5. Click Finish to save the Python file.

6. In VSCode, open the rotatingbodies.py file and verify that SimaPy scripts has been generated. Note that

sometimes the order of the lines might be different.

Next, we will look at the content of the Python file.

| Getting Started with SimaPy | Sima 4.6 | Page 14

5.2 Checking the Contents of the Python File

We will use the rotatingbodies.py generated in the previous sub-chapter as our template to create another Sima model.

However, before that, we will check the contents of the file to understand it better.

We will check each part of the Python file and compare it to the model in Sima GUI:

1. Importing SimaPy packages.

1 import simapy.sima.sima as sima

2 import simapy.sima.hydro as hydro

3 import simapy.sima.simo as simo

4 import simapy.sima.environment as environment

5 import simapy.sima.condition as condition

2. Defining an empty Sima Task (can be Simo, Riflex, etc.).

6 rotatingbodies = simo.SIMOTask()

7 rotatingbodies.name = "RotatingBodies"

At this stage, the equivalent Sima model contains an empty Task named “RotatingBodies”:

3. Defining an InitialCondition and appending it to the Task.

9 initial = condition.InitialCondition()

10 initial.name = "Initial"

11

12 rotatingbodies.initialCondition = initial

Now, we have an Initial condition in our Sima model:

4. Defining the model folder as a Simo model folder.

14 simomodel = simo.SIMOModel()

The Model folder is now present but not yet appended to the Task, it will be appended to the Task after all

parameters have been defined.

We will set the Task aside and focus on the Model folder.

| Getting Started with SimaPy | Sima 4.6 | Page 15

5. Defining an object (Location) and append it to the Model.

The sub-objects of the Location will be defined one by one:

16 location = simo.SIMOLocation()

17 location.name = "location"

18

19 initialviewpoint = sima.InitialViewpoint()

20

21 point3 = sima.Point3()

22 point3.x = -155.404

23 point3.y = -169.198

24 point3.z = 28.565

…

42 location.initialViewpoint = initialviewpoint

Some other sub-objects such as seaSurface and flatBottom will be defined after this line. At the end, they will be

appended to the Model folder:

78 simomodel.location = location

Now we have this equivalent Sima Model folder:

6. This will be repeated for all objects inside the Model folder.

Specifically:

⚫ Line 80-166: Simo body named DISC, where it also includes:

➢ Line 98-117: Winch mechanism named WINCH_1.

➢ Line 119-138: Winch mechanism named WINCH_2.

⚫ Line 168-222: Simo body named MOVING1.

⚫ Line 224-278: Simo body named MOVING2.

⚫ Line 280-288: Simple wire coupling named Wire1.

⚫ Line 290-298: Simple wire coupling named Wire2.

⚫ Line 300-354: Docking cone named D_HOR1.

⚫ Line 356-410: Docking cone named D_HOR2.

⚫ Line 412-418: Simo static calculation parameters.

⚫ Line 420-429: Simo dynamic calculation parameters.

| Getting Started with SimaPy | Sima 4.6 | Page 16

With this, our Sima Model folder has been populated as below:

7. In the last line, the Model folder is assigned to the Task defined in Step 2.

431 rotatingbodies.model = simomodel

Finally, our Sima model is complete:

However, as you may already noticed, we only have created the model in SimaPy without outputting anything. In

the next sub-chapter, we will see how to write the model to a JSON file.

| Getting Started with SimaPy | Sima 4.6 | Page 17

5.3 Writing the Model as JSON File from SimaPy

We will add a few lines to write the SimaPy model as a JSON file to be imported to Sima GUI using one of many

features of SimaPy.

At the end of the Python file, add the following lines:

Import additional packages

import os

from pathlib import Path

from simapy.sima_writer import SIMAWriter

Define output file path and file name

file = Path("output/my_rotatingbodies.json")

Check if the folder is present, if not create the folder

os.makedirs(file.parent, exist_ok=True)

Create a SIMAWriter instance and write the Task to the path above

writer = SIMAWriter()

writer.write([rotatingbodies], file, indent=4)

Output to terminal indicating the location of the file

print(f"JSON file is written to {file}")

Run the Python script and a JSON file my_rotatingbodies.json will be written into the output folder:

This JSON file contains the same model as the original Rotating Bodies example. You can try to import it into Sima GUI

and see it by yourself. Now you understand the content of the simapy_test.py file we used in the previous chapter.

| Getting Started with SimaPy | Sima 4.6 | Page 18

Note: Just remember this logic when working with SimaPy:

1. Create an object.

2. Define the parameters of the object.

3. Append it to a higher-level object.

In the next sub-chapter, we will use the power of Python scripting to modify the Sima model iteratively.

5.4 Using Python Scripting to Modify the Model

We will now use some Python scripting like for-loop or string manipulation to automate the modification of our model.

Firstly, copy the rotatingbodies_mod.py file from the workshop input folder to your SimaPy project folder and open it.

This file is a slightly modified version of the rotatingbodies.py from the previous sub-chapter.

There are mainly two changes:

⚫ The second rotating body (MOVING2) and its associated objects were removed as shown below:

⚫ A line to import numpy was added and other import lines were moved to the start of the file. It is considered a good

practice to import the packages at the beginning.

| Getting Started with SimaPy | Sima 4.6 | Page 19

1 import os

2 from pathlib import Path

3 import numpy as np

4 import simapy.sima.condition as condition

5 import simapy.sima.environment as environment

6 import simapy.sima.hydro as hydro

7 import simapy.sima.sima as sima

8 import simapy.sima.simo as simo

9 from simapy.sima_writer import SIMAWriter

We will copy the body MOVING1 and copy it iteratively around the DISC body N times:

To do so, we will add some lines to Python script. You can add them into the following part of the Python script:

295 # Additions start here

296

297 # Additions end here

Add the following:

1. Define the final number of bodies, change the name of the Task, and pre-c cu c c g ’ z .

F , ’ u qu 4.

bodies_num = 4

dir_step = 360.0/bodies_num

rotatingbodies.name = f"RotatingBodies_{bodies_num}"

2. Start a for-loop.

for i in np.arange(1,bodies_num):

3. Calculate the current direction of the body number i. Note there is an indentation.

 # Set the direction of the assembly

 current_dir = dir_step*i # degrees

 current_dir = np.deg2rad(current_dir)

4. Copy the body MOVING1 to a Python variable, moving.

 # Copy moving1 as base

 moving = moving1.copy()

| Getting Started with SimaPy | Sima 4.6 | Page 20

Note: It is important to pass a copy of the object using copy() method because SimaPy only pass the reference

to the object if it is not used.

A consequence of passing just the reference to an object is that the original object will be modified when you modify

the copied object. See the following two code snippets:

Case A

moving = moving1.copy()

moving.name = "MOVING2"

Case B

moving = moving1

moving.name = "MOVING2"

Case A will result in the following Sima model:

Meanwhile, case B will result in the following Sima model:

In case B, the name of the MOVING1 (original object) was changed to MOVING2 too, which is not our intention.

5. Change some parameters of the copied body, moving.

 # Change some parameters of "moving"

 moving.name = f"MOVING{i+1}"

 moving.initialPosition.x = np.cos(current_dir) * 20.0

 moving.initialPosition.y = np.sin(current_dir) * 20.0

 moving_point = moving.bodyPoints[0]

 moving_point.name = f"MOVING{i+1}_point"

Note: The name of the attached body point needs to be changed. This is because in Sima, these body points

must have unique names as shown below:

| Getting Started with SimaPy | Sima 4.6 | Page 21

6. Append the copied body to the model folder.

 # Append it to the model folder

 simomodel.bodies.append(moving)

Otherwise, our newly created body is not attached to the model folder.

7. Copy the body point and the attached winch of the DISC body because we need to attach our wire later to it. Verify

if it is appended to the DISC body.

 # Copy the body point and the attached winch of the DISC body,

 # change the names, and append it to DISC body.

 discpoint = discpoint_1.copy()

 discpoint.name = f"DISCpoint_{i+1}"

 discpoint.winch.name = f"WINCH_{i+1}"

 disc.bodyPoints.append(discpoint)

8. Copy Wire1, change the name and end points (attach it to the newly created body MOVING2 and DISC), and

append it to the model folder.

 # Copy Wire1, change the name and endPoints,

 # and finally append it to the model folder

 wire = wire1.copy()

 wire.name = f"Wire{i+1}"

 wire.endPoint1 = discpoint

 wire.endPoint2 = moving_point

 simomodel.simpleWireCouplings.append(wire)

9. Lastly, copy the docking cone D_HOR1.

| Getting Started with SimaPy | Sima 4.6 | Page 22

 # Copy docking cone, change the name, direction, and associated bodies,

 # then append it to the model folder

 d_hor = d_hor1.copy()

 d_hor.name = f"D_HOR{i+1}"

 d_hor.dockingConeDirectionVector.x = np.cos(current_dir)

 d_hor.dockingConeDirectionVector.y = np.sin(current_dir)

 d_hor.dockingPinBody = moving

 d_hor.dockingConeBody = disc

 simomodel.dockingCones.append(d_hor)

You can find the finished script in the file rotatingbodies_mod_done.py. Please compare your file with it.

10. Run the Python code to output the JSON file. Then, try to import it into Sima GUI.

Now we have 4 bodies in our model.

11. Change the value of bodies_num variable to a larger number and see what happens.

Note: Notice how we do not need to re-attach the model folder to the Task. This is because once we attach an

object, no reattachment is needed.

Congratulations! Now you can leverage Python scripting to modify your SimaPy model.

DNV | digital@dnv.com | dnv.com/digital

About DNV
D V  u c k g v , g 100 c u . T ug
broad experience and deep expertise D V  v c u c , u ,
inspires and invents solutions.

Digital Solutions
DNV is a world-leading provider of digital solutions and software applications with focus on the energy, maritime and
healthcare markets. Our solutions are used worldwide to manage risk and performance for wind turbines, electric grids,
pipelines, processing plants, offshore structures, ships, and more. Supported by our domain knowledge and Veracity
assurance platform, we enable companies to digitize and manage business critical activities in a sustainable,
cost-efficient, safe and secure way.

